# Laboratory Evaluation PurpleAir PA-I Indoor



AQ-SPEC
Air Quality Sensor Performance Evaluation Center

## Background

Three **PurpleAir PA-I Indoor** (Hereinafter PA-I Indoor) sensors (units IDs: 29D1, A3CA and BB9F) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (02/15/2018 to 04/25/2018) under ambient environmental conditions and have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three PA-I Indoor units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

#### PA-I Indoor (3 units tested):

- ➤ Particle sensor (optical; non-FEM)
- ➤ PM sensor: Plantower PMS1003
- Each unit measures: PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> (μg/m³) Temperature (°F)
- ➤ Unit cost: ~\$180
- Time resolution: 2-min (during lab evaluation)
- ➤ Units IDs: 29D1, A3CA and BB9F

#### **GRIMM** (reference method):

- > Optical particle counter
- ➤ FEM PM<sub>2.5</sub>
- ➤ Uses proprietary algorithms to calculate total PM, PM<sub>2.5</sub>, and PM<sub>1</sub> mass conc. from particle number measurements
- ➤ Cost: ~\$25,000
- ➤ Time resolution: 1-min

#### TSI APS 3321 (reference method for PM<sub>10</sub> mass):

- ➤ Aerodynamic particle sizer
- ➤ Measures particles from 0.5 to 20 µm
- ➤ Uses a patented, double-crest optical system for unmatched sizing accuracy
- > Cost: ~\$50,000

### Evaluation results guideline

- PurleAir PA-I Indoor vs GRIMM PM<sub>1.0</sub> mass concentration
- PurleAir PA-I Indoor vs FEM GRIMM PM<sub>2.5</sub> mass concentration
- PurleAir PA-I Indoor vs GRIMM vs APS PM<sub>10</sub> mass concentration







**TSI APS 3321** 

PurpleAir PA-I Indoor

# Evaluation results for PM<sub>1.0</sub> mass concentration

PurpleAir PA-I Indoor vs GRIMM

#### PA-I Indoor vs GRIMM (PM<sub>1.0</sub> mass conc.)



The PA-I Indoor sensors tracked well with the PM<sub>1.0</sub> concentration variation as recorded by the GRIMM in the concentration range of 0 - ~200 μg/m<sup>3</sup>.

#### Coefficient of Determination



 The PA-I Indoor sensors showed very strong correlations with the GRIMM PM<sub>1.0</sub> mass conc. (R<sup>2</sup> > 0.99).

#### PA-I Indoor vs GRIMM PM<sub>1.0</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m³) | GRIMM<br>(μg/m³) | Accuracy<br>(%) |  |
|-------------------|------------------------|------------------|-----------------|--|
| 1                 | 12.8                   | 9.5              | 65.1            |  |
| 2                 | 18.8                   | 14.2             | 67.5            |  |
| 3                 | 44.5                   | 52.1             | 85.3            |  |
| 4                 | 109.5                  | 123.1            | 89.0            |  |
| 5                 | 183.3                  | 199.1            | 92.1            |  |

• The PA-I Indoor sensors underestimated GRIMM  $PM_{1.0}$  at mass concentrations > 50  $\mu g/m^3$ , while they overestimated mass concentrations < 50  $\mu g/m^3$ . The accuracy of the PA-I Indoor sensors increased as  $PM_{1.0}$  mass concentrations increased.

#### PA-I Indoor: Data Recovery and intra-model variability

- Data recovery for PM<sub>1.0</sub> mass concentration from all units was 100%
- Low PM<sub>1 0</sub> measurement variations were observed between the PA-I Indoor sensors

#### PM<sub>1.0</sub> Precision: PA-I Indoor

Precision (Effect of PM<sub>1.0</sub> conc., Temperature and Relative Humidity)







• Overall, the PA-I Indoor sensors showed high precision for all of the combinations of low, medium and high PM<sub>1,0</sub> conc., T and RH.

#### PA-I Indoor PM<sub>1.0</sub>: Climate Susceptibility



Low Temp – RH ramping (medium conc.)

## High Temp – RH ramping (medium conc.)



## Evaluation results for PM<sub>2.5</sub> mass concentration

PurpleAir PA-I Indoor vs FEM GRIMM

#### PA-I Indoor vs FEM GRIMM (PM<sub>2.5</sub> mass conc.)



 The PA-I Indoor sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~300 μg/m<sup>3</sup>.

#### Coefficient of Determination



 The PA-I Indoor sensors showed very strong correlations with the FEM GRIMM PM<sub>2.5</sub> mass conc. (R<sup>2</sup> > 0.99)

#### PA-I Indoor vs FEM GRIMM PM<sub>2.5</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m³) | FEM GRIMM<br>(μg/m³) | Accuracy<br>(%) |  |
|-------------------|------------------------|----------------------|-----------------|--|
| 1                 | 24.4                   | 10.3                 | -37.1           |  |
| 2                 | 33.9                   | 15.3                 | -21.5           |  |
| 3                 | 86.3                   | 60.2                 | 56.6            |  |
| 4                 | 216.1                  | 152.6                | 58.3            |  |
| 5                 | 387.4                  | 255.2                | 48.2            |  |

• The PA-I Indoor sensors overestimated FEM GRIMM  $PM_{2.5}$  mass concentration at 20 °C and 40% RH. The accuracy of the PA-I Indoor sensors was negative at low  $PM_{2.5}$  mass conc. and fairly constant (48% to 57%) for  $PM_{2.5}$  mass concentrations > 50  $\mu$ g/m<sup>3</sup>.

#### PA-I Indoor: Data Recovery and intra-model variability

- Data recovery for PM<sub>2.5</sub> mass concentration from all units was 100%
- Low PM<sub>2.5</sub> measurement variations were observed between the PA-I Indoor sensors

#### PM<sub>2.5</sub> Precision: PA-I Indoor

• Precision (Effect of PM<sub>2.5</sub> conc., Temperature and Relative Humidity)







• Overall, the PA-I Indoor sensors showed high precision for all of the combinations of low, medium and high PM<sub>2.5</sub> conc., T and RH.

#### PA-I Indoor PM<sub>2.5</sub>: Climate Susceptibility



Low Temp – RH ramping (medium conc.)

## High Temp – RH ramping (medium conc.)



## Discussion ( $PM_{1.0}$ and $PM_{2.5}$ )

- **Accuracy**: Overall, the accuracy of the PA-I Indoor sensors increased with increasing  $PM_{1.0}$  mass concentration. The accuracy of the PA-I Indoor sensors was negative at lower  $PM_{2.5}$  mass conc. and fairly constant (48% to 57%) for  $PM_{2.5}$  mass concentrations > 50 μg/m³. The PA-I Indoor sensors underestimated  $PM_{1.0}$  at  $PM_{1.0}$  mass conc. > 50 μg/m³, while they overestimate  $PM_{1.0}$  mass conc. < 50 μg/m³. The sensors overestimated all  $PM_{2.5}$  measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- Precision: The PA-I Indoor sensors have high precision for all test combinations (PM concentrations, T and RH) for both PM<sub>1.0</sub> and PM<sub>2.5</sub> mass concentrations
- > Intra-model variability: Low intra-model variability was observed among the PA-I Indoor sensors.
- ➤ Data Recovery: Data recovery for PM<sub>1.0</sub> and PM<sub>2.5</sub> mass concentration from all units was 100%.
- $\triangleright$  Coefficient of Determination: The PA-I Indoor sensors showed very strong correlation/linear response with the corresponding GRIMM PM<sub>1.0</sub> and FEM GRIMM PM<sub>2.5</sub> measurement data (R<sup>2</sup> > 0.99).
- Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the PA-I Indoor sensors except that the sensors showed some small spiked concentration changes at the 65% RH set-point at 5°C.

# Evaluation results for PM<sub>10</sub> mass concentration

PurpleAir PA-I Indoor vs GRIMM vs APS

PA-I Indoor vs GRIMM vs APS (PM<sub>10</sub> mass conc.)
Concentration Ramping at 20 °C and 40% RH



- The PA-I Indoor sensors tracked well with the concentration variation as recorded by the APS and GRIMM in the concentration range of 0 - ~200 μg/m³.
- The PA-I Indoor sensors showed very strong correlations with the corresponding GRIMM and APS PM<sub>10</sub> mass conc. (R<sup>2</sup> > 0.96).



#### PA-I Indoor vs GRIMM vs APS PM<sub>10</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m³) | GRIMM<br>(μg/m³) | Accuracy<br>(%) | Steady state<br># | Sensor Mean<br>(μg/m³) | APS<br>(μg/m³) | Accuracy<br>(%) |
|-------------------|------------------------|------------------|-----------------|-------------------|------------------------|----------------|-----------------|
| 1                 | 3.6                    | 10.1             | 35.2            | 1                 | 3.6                    | 7.9            | 45.1            |
| 2                 | 7.6                    | 21.8             | 34.9            | 2                 | 7.6                    | 17.4           | 43.6            |
| 3                 | 18.0                   | 51.5             | 35.0            | 3                 | 18.0                   | 42.7           | 42.2            |
| 4                 | 32.5                   | 116.9            | 27.8            | 4                 | 32.5                   | 86.9           | 37.4            |
| 5                 | 45.1                   | 198.5            | 22.7            | 5                 | 45.1                   | 166.7          | 27.1            |

 The PA-I Indoor sensors underestimated GRIMM and APS PM<sub>10</sub> mass concentration at 20 °C and 40% RH. The accuracy of the PA-I Indoor sensors decreased as PM<sub>10</sub> mass concentration increased.

#### PA-I Indoor: Data Recovery and intra-model variability

- Data recovery for PM<sub>10</sub> mass concentration from all units was 100%
- Moderate PM<sub>10</sub> measurement variations were observed between the PA-I Indoor sensors

#### PA-I Indoor PM<sub>10</sub>: Climate Susceptibility



Low Temp – RH ramping (medium conc.)

## High Temp – RH ramping (medium conc.)



## Discussion (PM<sub>10</sub>)

- ➤ **Accuracy**: Overall, the accuracy of the PA-I Indoor sensors decreased as PM<sub>10</sub> mass concentration increased. The PA-I Indoor sensors underestimated PM<sub>10</sub> mass concentrations as measured by GRIMM and APS in the laboratory experiments at 20 °C and 40% RH.
- ➤ **Precision**: Due to the nature of Arizona test dust, the aerosol concentration showed some variability, therefore, the precision cannot be fairly estimated.
- Intra-model variability: Moderate intra-model variability was observed among the PA-I Indoor sensors.
- ➤ Data Recovery: Data recovery for PM<sub>10</sub> mass concentration from all units was ~ 99%.
- **Coefficient of Determination**: The PA-I Indoor sensors showed very strong correlation/linear response with the corresponding GRIMM PM<sub>10</sub> ( $R^2 = 0.97$ ) and APS PM<sub>10</sub> ( $R^2 = 0.968$ ).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combinations, the climate condition had minimal effect on the PA-I Indoor sensors except that the sensors showed spiked concentration changes at the 65% RH set-point at 5 °C.